Security Analysis of Malicious Socialbots on the Web

نویسندگان

  • Yazan Boshmaf
  • Ildar Muslukhov
  • Konstantin Beznosov
چکیده

The open nature of the Web, online social networks (OSNs) in particular, makes it possible to design socialbots—automation software that controls fake accounts in a target OSN, and has the ability to perform basic activities similar to those of real users. In the wrong hands, socialbots can be used to infiltrate online communities, build up trust over time, and then engage in various malicious activities. This dissertation presents an in-depth security analysis of malicious socialbots on the Web, OSNs in particular. The analysis focuses on two main goals: (1) to characterize and analyze the vulnerability of OSNs to cyber attacks by malicious socialbots, social infiltration in particular, and (2) to design and evaluate a countermeasure to efficiently and effectively defend against socialbots. To achieve these goals, we first studied social infiltration as an organized campaign operated by a socialbot network (SbN)—a group of programmable socialbots that are coordinated by an attacker in a botnet-like fashion. We implemented a prototypical SbN consisting of 100 socialbots and operated it on Facebook for 8 weeks. Among various findings, we observed that some users are more likely to become victims than others, depending on factors related to their social structure. Moreover, we found that traditional OSN defenses are not effective at identifying automated fake accounts or their social infiltration campaigns. Based on these findings, we designed Íntegro—an infiltration-resilient defense system that helps OSNs detect automated fake accounts via a user ranking scheme. In particular, Íntegro relies on a novel approach that leverages victim classification for robust graph-based fake account detection, with provable security guarantees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Security Analysis of Malicious Socialbots on the Web (DRAFT: May 13, 2015)

The open nature of the Web, online social networks (OSNs) in particular, makes it possible to design socialbots—automation software that controls fake accounts in a target OSN, and has the ability to perform basic activities similar to those of real users. In the wrong hands, socialbots can be used to infiltrate online communities, build up trust over time, and then engage in various malicious ...

متن کامل

Analyzing new features of infected web content in detection of malicious web pages

Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...

متن کامل

The Security of Organizations and Individuals in Online Social Networks

Online social networks (OSNs) have gained great popularity in recent years, having become an integral part of our daily lives and an indispensable dimension of the Internet. Users worldwide spend a significant amount of their time on OSNs, which have enabled them to create new connections with others based on shared interests, activities, and ideas, as well as maintain connections from the past...

متن کامل

Design and analysis of a social botnet

Online Social Networks (OSNs) have attracted millions of active users and have become an integral part of today’s Web ecosystem. Unfortunately, in the wrong hands, OSNs can be used to harvest private user data, distribute malware, control botnets, perform surveillance, spread misinformation, and even influence algorithmic trading. Usually, an adversary starts off by running an infiltration camp...

متن کامل

Key Challenges in Defending Against Malicious Socialbots

The ease with which we adopt online personas and relationships has created a soft spot that cyber criminals are willing to exploit. Advances in artificial intelligence make it feasible to design bots that sense, think and act cooperatively in social settings just like human beings. In the wrong hands, these bots can be used to infiltrate online communities, build up trust over time and then sen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015